DC FieldValueLanguage
dc.contributor.authorCorral, C.en_US
dc.contributor.authorGuzmán, O.en_US
dc.contributor.authorLópez-Callejas, C.en_US
dc.contributor.authorMemarpanahi, P.en_US
dc.contributor.authorSzeptycki, P.en_US
dc.contributor.authorTodorčević, Stevoen_US
dc.date.accessioned2025-12-24T09:23:27Z-
dc.date.available2025-12-24T09:23:27Z-
dc.date.issued2025-
dc.identifier.issn0008-414X-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5638-
dc.description.abstractWe introduce a generalization of sequential compactness using barriers on ω extending naturally the notion introduced in [W. Kubiś and P. Szeptycki, On a topological Ramsey theorem, Canad. Math. Bull., 66 (2023), 156–165]. We improve results from [C. Corral and O. Guzmán and C. López-Callejas, High dimensional sequential compactness, Fund. Math.] by building spaces that are B-sequentially compact but not C-sequentially compact when the barriers B and C satisfy certain rank assumption which turns out to be equivalent to a Katětov-order assumption. Such examples are constructed under the assumption L = C . We also exhibit some classes of spaces that are B-sequentially compact for every barrier B, including some classical classes of compact spaces from functional analysis, and as a byproduct, we obtain some results on angelic spaces. Finally, we introduce and compute some cardinal invariants naturally associated to barriers.en_US
dc.publisherCambridge University Pressen_US
dc.relation.ispartofCanadian Journal of Mathematicsen_US
dc.subjectalmost disjoint family | barrier | bisequential | bounding number | Nash-Williams | Ramsey convergence | sequentially compact | ℬ-sequentially compact spaceen_US
dc.titleInfinite dimensional sequential compactness: Sequential compactness based on barriersen_US
dc.typeArticleen_US
dc.identifier.doi10.4153/S0008414X24000646-
dc.identifier.scopus2-s2.0-85211989666-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage2083-
dc.relation.lastpage2110-
dc.relation.issue6-
dc.relation.volume77-
dc.description.rankM22-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

Page view(s)

11
checked on Jan 10, 2026

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.