DC FieldValueLanguage
dc.contributor.authorLimonchenko, Ivanen_US
dc.contributor.authorŽivaljević, Radeen_US
dc.date.accessioned2025-12-03T11:42:04Z-
dc.date.available2025-12-03T11:42:04Z-
dc.date.issued2026-02-01-
dc.identifier.issn1422-6383-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5628-
dc.description.abstractWe prove that a Murai sphere is flag if and only if it is a nerve complex of a flag nestohedron and classify all the polytopes arising in this way. Our classification implies that flag Murai spheres satisfy the Nevo-Petersen conjecture on γ-vectors of flag homology spheres. We continue by showing that a Bier sphere is minimally non-Golod if and only if it is a nerve complex of a truncation polytope different from a simplex and classify all the polytopes arising in this way. Finally, the notion of a cubical Bier sphere is introduced based on the polyhedral product construction, and we study combinatorial and geometrical properties of these cubical complexes.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofResults in Mathematicsen_US
dc.subjectBier sphere | Face ring | Golod complex | Nestohedron | Polyhedral product | Truncation polytopeen_US
dc.titleBier Spheres, Nevo-Petersen Conjecture and Polyhedral Productsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00025-025-02561-9-
dc.identifier.scopus2-s2.0-105022638155-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMechanicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage6-
dc.relation.volume81-
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.openairetypeArticle-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-2072-8475-
crisitem.author.orcid0000-0001-9801-8839-
Show simple item record

Page view(s)

47
checked on Feb 2, 2026

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.