| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Bahri, Anthony | en_US |
| dc.contributor.author | Limonchenko, Ivan | en_US |
| dc.contributor.author | Panov, Taras | en_US |
| dc.contributor.author | Song, Jongbaek | en_US |
| dc.contributor.author | Stanley, Donald | en_US |
| dc.date.accessioned | 2025-12-03T11:38:39Z | - |
| dc.date.available | 2025-12-03T11:38:39Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.issn | 0179-5376 | - |
| dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/5627 | - |
| dc.description.abstract | We define bigraded persistent homology modules and bigraded barcodes of a finite pseudo-metric space X using the ordinary and double homology of the moment-angle complex associated with the Vietoris–Rips filtration of X. We prove a stability theorem for the bigraded persistent double homology modules and barcodes. | en_US |
| dc.publisher | Springer Link | en_US |
| dc.relation.ispartof | Discrete and Computational Geometry | en_US |
| dc.subject | Barcode | Double homology | Moment-angle complex | Persistence module | Persistent homology | Polyhedral product | Stanley-Reisner ring | en_US |
| dc.title | A Stability Theorem for Bigraded Persistence Barcodes | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1007/s00454-025-00771-0 | - |
| dc.identifier.scopus | 2-s2.0-105017394547 | - |
| dc.contributor.affiliation | Mathematics | en_US |
| dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | en_US |
| dc.description.rank | M22 | - |
| item.cerifentitytype | Publications | - |
| item.grantfulltext | none | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.fulltext | No Fulltext | - |
| item.openairetype | Article | - |
| crisitem.author.orcid | 0000-0002-2072-8475 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.