DC FieldValueLanguage
dc.contributor.authorSlavko Moconjaen_US
dc.contributor.authorTanović, Predragen_US
dc.date.accessioned2025-11-19T12:36:58Z-
dc.date.available2025-11-19T12:36:58Z-
dc.date.issued2024-
dc.identifier.issn0168-0072-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5603-
dc.description.abstractWe introduce and study weak o-minimality in the context of complete types in an arbitrary first-order theory. A type p ∈ S(A) is weakly o-minimal if for some relatively A-definable linear order, <, on p(C) every relatively LC-definable subset of p(C) has finitely many convex components in (p(C), <). We establish many nice properties of weakly o-minimal types. For example, we prove that weakly o-minimal types are dp-minimal and share several properties of weight-one types in stable theories, and that a version of monotonicity theorem holds for relatively definable functions on the locus of a weakly o-minimal type.en_US
dc.publisherElsevieren_US
dc.relationScience Fund of the Republic of Serbia, grant 7750027–SMARTen_US
dc.relation.ispartofAnnals of Pure and Applied Logicen_US
dc.subjectdp rank | Forking | Forking orthogonality | Ordered structure | Weakly o-minimal type | Weakly orthogonal types; Mathematics - Logic; Mathematics - Logicen_US
dc.titleWeakly o-minimal typesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.apal.2025.103605-
dc.identifier.scopus2-s2.0-105004445203-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage103605-
dc.relation.issue9-
dc.relation.volume176-
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.deptMathematics-
crisitem.author.orcid0000-0003-0307-7508-
Show simple item record

Page view(s)

12
checked on Nov 26, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.