DC FieldValueLanguage
dc.contributor.authorIvković, Stefanen_US
dc.date.accessioned2025-08-06T11:26:19Z-
dc.date.available2025-08-06T11:26:19Z-
dc.date.issued2025-
dc.identifier.isbn978-3-031-85742-3-
dc.identifier.isbn978-3-031-85743-0-
dc.identifier.issn1931-6828-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5570-
dc.description.abstractIn this chapter, we study the dynamics of the adjoint of a weighted composition operator, and we give necessary and sufficient conditions for this adjoint operator to be topologically transitive on the space of Radon measures on a locally compact Hausdorff space. Moreover, we provide sufficient conditions for this operator to be chaotic, and we give concrete examples. Next, we consider the real Banach space of signed Radon measures, and we give in this context the sufficient conditions for the convergence of Markov chains induced by the adjoint of an integral operator. Also, we illustrate this result by a concrete example. In addition, we obtain some structural results regarding the space of Radon measures. We characterize a class of cones whose complement is spaceable in the space of Radon measures.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofseriesSpringer Optimization and Its Applications (SOIA)en_US
dc.titleDynamics of Operators on the Space of Radon Measuresen_US
dc.typeBook Chapteren_US
dc.relation.publicationSpringer Optimization and Its Applicationsen_US
dc.identifier.doi10.1007/978-3-031-85743-0_10-
dc.identifier.scopus2-s2.0-105009431656-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.issn1931-6836en_US
dc.relation.firstpage171-
dc.relation.lastpage193-
dc.description.rankM13-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.openairetypeBook Chapter-
crisitem.author.orcid0000-0003-2248-8206-
Show simple item record

Page view(s)

75
checked on Dec 7, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.