DC FieldValueLanguage
dc.contributor.authorJevtić, Filip D.en_US
dc.contributor.authorTimotijević, Marinkoen_US
dc.contributor.authorŽivaljević, Radeen_US
dc.date.accessioned2025-08-04T12:14:12Z-
dc.date.available2025-08-04T12:14:12Z-
dc.date.issued2025-
dc.identifier.issn0354-5180-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5568-
dc.description.abstractWe prove that the median hypersimplex ∆2k,k is Minkowski indecomposable, i.e. it cannot be expressed as a non-trivial Minkowski sum ∆2k,k = P + Q, where P , λ∆2k,k , Q. Since ∆2k,k is a deformed permutahedron, we obtain as a corollary that ∆2k,k represents a ray in the submodular cone (the deformation cone of the permutahedron). Building on the previously developed geometric methods and extensive computer search, we exhibit a twelve vertex, 4-dimensional polytopal realization of the Bier sphere of the hemi-icosahedron, the vertex minimal triangulation of the real projective plane.en_US
dc.publisherFaculty of Sciences and Mathematics, University of Nišen_US
dc.relation.ispartofFilomaten_US
dc.subjectMinkowski sum | hypersimplex | Bier sphere | polytopal spheres | deformation conesen_US
dc.titleIndecomposability of the median hypersimplex and polytopality of the hemi-icosahedral Bier sphereen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/FIL2513251J-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage4251-
dc.relation.lastpage4260-
dc.relation.issue13-
dc.relation.volume39-
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.orcid0009-0009-9594-9895-
crisitem.author.orcid0000-0001-9801-8839-
Show simple item record

Page view(s)

60
checked on Nov 27, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.