DC FieldValueLanguage
dc.contributor.authorRapajić, Isidoraen_US
dc.contributor.authorSimić, Srboljuben_US
dc.date.accessioned2025-07-31T12:11:50Z-
dc.date.available2025-07-31T12:11:50Z-
dc.date.issued2025-
dc.identifier.isbn978-86-905512-1-7-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5567-
dc.description.abstractWashburn’s equation describes the flow of a viscous incompressible fluid through a narrow vertical cylindrical pipe. It is a simplified version of the Navier-Stokes equations. If the vertical pipe has circular cross section of constant radius, equilibrium height of the fluid is asymptotically stable. In this study, it is shown that in the case of slowly varying cross section equilibrium height remains asymptotically stable, but critical value of the pa- rameter depends on the shape of the pipe. The model and its stability analysis generalize existing results, based upon lubrication theory approach, by inclusion of inertial term.en_US
dc.publisherSerbian Society of Mechanics, Belgradeen_US
dc.subjectWashburn’s equation | Stability analysisen_US
dc.titleSTABILITY ANALYSIS OF THE GENERALIZED WASHBURN EQUATIONen_US
dc.typeConference Paperen_US
dc.relation.conference10th International Congress of the Serbian Society of Mechanics Niš, Serbia, June 18-20, 2025en_US
dc.relation.publicationICSSM 2025 Proceedingsen_US
dc.identifier.doi10.46793/ICSSM25-
dc.identifier.urlhttps://www.sdm.org.rs/congress/2025/docs/proceedings.pdf-
dc.contributor.affiliationMechanicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage111-
dc.relation.lastpage112-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.openairetypeConference Paper-
crisitem.author.orcid0009-0007-3481-4466-
Show simple item record

Page view(s)

69
checked on Dec 7, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.