DC FieldValueLanguage
dc.contributor.authorStojiljković, Vuken_US
dc.contributor.authorRadojević, Slobodanen_US
dc.contributor.authorÇetin, Eyüpen_US
dc.contributor.authorČavić, Vesna Šešumen_US
dc.contributor.authorRadenović, Stojanen_US
dc.date.accessioned2025-06-16T11:57:54Z-
dc.date.available2025-06-16T11:57:54Z-
dc.date.issued2022-
dc.identifier.issn2073-8994-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5556-
dc.description.abstractSharp bounds (Formula presented) were obtained, as well as one new bound for (Formula presented) A new situation to note about the obtained boundaries is the symmetry in the upper and lower boundary, where the upper boundary differs by a constant from the lower boundary. New consequences of the inequalities were obtained in terms of the Riemann–Liovuille fractional integral and in terms of the standard integral.en_US
dc.publisherMDPIen_US
dc.relation.ispartofSymmetryen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectJordan’s inequality | L’Hôpital’s rule of monotonicity | polynomial bounds | trigonometric functionsen_US
dc.titleSharp Bounds for Trigonometric and Hyperbolic Functions with Application to Fractional Calculusen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/sym14061260-
dc.identifier.scopus2-s2.0-85133738060-
dc.relation.firstpage1260-
dc.relation.issue6-
dc.relation.volume14-
dc.description.rankM21-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.openairetypeArticle-
crisitem.author.orcid0000-0002-4244-4342-
Files in This Item:
File Description SizeFormat
VStojiljkovic.pdf247.64 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

6
checked on Dec 6, 2025

Page view(s)

81
checked on Dec 8, 2025

Download(s)

12
checked on Dec 8, 2025

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons