DC FieldValueLanguage
dc.contributor.authorStojiljković, Vuken_US
dc.date.accessioned2025-06-16T10:41:42Z-
dc.date.available2025-06-16T10:41:42Z-
dc.date.issued2023-01-01-
dc.identifier.issn1307-5543-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5549-
dc.description.abstractWe establish various fractional convex inequalities of the Hermite-Hadamard type which generalize the previously obtained results in the literature. Various types of such inequalities are obtained and given as corollaries. The main motivation of the paper is to generalize the recently published results in terms of the (α, h - m) - p convexity with k-p Riemann Liouville fractional operator. The application of Hölders inequality is given in tandem with the k-p fractional operator of the convex type.en_US
dc.publisherNew York Business Globalen_US
dc.relation.ispartofEuropean Journal of Pure and Applied Mathematicsen_US
dc.rightsAttribution-NonCommercial-ShareAlike 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/*
dc.subject(α,h-m)-p-convex function | Fractional Inequality | Hermite-Hadamard inequality | Hölder inequalityen_US
dc.titleHermite Hadamard Type Inequalities Involving (k-p) Fractional Operator with (α, h - m) - p convexityen_US
dc.typeArticleen_US
dc.identifier.doi10.29020/nybg.ejpam.v16i1.4689-
dc.identifier.scopus2-s2.0-85152564197-
dc.relation.firstpage503-
dc.relation.lastpage522-
dc.relation.issue1-
dc.relation.volume16-
dc.description.rankM21-
item.cerifentitytypePublications-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextWith Fulltext-
item.openairetypeArticle-
crisitem.author.orcid0000-0002-4244-4342-
Files in This Item:
File Description SizeFormat
VStojiljkovic.pdf472.3 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

12
checked on Dec 6, 2025

Page view(s)

48
checked on Dec 7, 2025

Download(s)

11
checked on Dec 7, 2025

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons