DC FieldValueLanguage
dc.contributor.authorBaralić, Đorđeen_US
dc.date.accessioned2025-05-29T11:47:44Z-
dc.date.available2025-05-29T11:47:44Z-
dc.date.issued2025-
dc.identifier.issn1015-8634-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5536-
dc.description.abstractThe chromatic number for properly colouring the facets of a combinatorial simple n-polytope Pn that is the orbit space of a quasitoric manifold satisfies the inequality n≤Pn≤2n−1. The inequality is sharp for n=2 but not for n=3 due to the Four Color theorem. In this note, we construct a simple 4-polytope admitting a characteristic map whose chromatic number equals 15 and deduce that the predicted upper bound is attained for n=4. Analogous results are verified for the case of oriented small covers in dimensions 4 and 5.en_US
dc.publisherThe Korean Mathematical Societyen_US
dc.relation.ispartofBulletin of the Korean Mathematical Societyen_US
dc.subjectsmall cover | quasitoric manifold | cyclic polytope | chromatic numberen_US
dc.titleExistence of a small cover over a 15-colorable simple 4-polytopeen_US
dc.typeArticleen_US
dc.identifier.doi10.4134/BKMS.b240385-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.description.rank~M23-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-2836-7958-
Show simple item record

Page view(s)

73
checked on Nov 27, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.