DC FieldValueLanguage
dc.contributor.authorBlagojević, Pavleen
dc.contributor.authorFrick, Florianen
dc.contributor.authorHaase, Alberten
dc.contributor.authorZiegler, Günteren
dc.date.accessioned2020-04-26T19:36:30Z-
dc.date.available2020-04-26T19:36:30Z-
dc.date.issued2018-10-01en
dc.identifier.issn0002-9947en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/551-
dc.description.abstractIn 1960 Grünbaum asked whether for any finite mass in ℝd there are d hyperplanes that cut it into 2d equal parts. This was proved by Hadwiger (1966) for d ≤ 3, but disproved by Avis (1984) for d ≥ 5, while the case d =4 remained open. More generally, Ramos (1996) asked for the smallest dimension Δ(j, k) in which for any j masses there are k affine hyperplanes that simultaneously cut each of the masses into 2k equal parts. At present the best lower bounds on Δ(j, k) are provided by Avis (1984) and Ramos (1996), the best upper bounds by Mani-Levitska, Vrećica and Živaljević (2006). The problem has been an active testing ground for advanced machinery from equivariant topology. We give a critical review of the work on the Grünbaum–Hadwiger–Ramos problem, which includes the documentation of essential gaps in the proofs for some previous claims. Furthermore, we establish that Δ(j, 2) =½(3j +1) in the cases when j − 1 is a power of 2, j ≥ 5.en
dc.publisherAmerican Mathematical Society-
dc.relationAdvanced Techniques of Cryptology, Image Processing and Computational Topology for Information Security-
dc.relationEuropean Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC, Grant agreement no. 247029-SDModels-
dc.relation.ispartofTransactions of the American Mathematical Societyen
dc.titleTopology of the GrÜnbaum–hadwiger–ramos hyperplane mass partition problemen
dc.typeArticleen
dc.identifier.doi10.1090/tran/7528en
dc.identifier.scopus2-s2.0-85050664442en
dc.relation.firstpage6795en
dc.relation.lastpage6824en
dc.relation.issue10en
dc.relation.volume370en
dc.description.rankM21a-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-3649-9897-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174008e.php-
crisitem.project.fundingProgramDirectorate for Education & Human Resources-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Education & Human Resources/1740089-
Show simple item record

SCOPUSTM   
Citations

20
checked on Apr 3, 2025

Page view(s)

26
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.