DC FieldValueLanguage
dc.contributor.authorŽunić, Jovišaen_US
dc.contributor.authorRosin, Paul L.en_US
dc.date.accessioned2025-03-27T14:09:05Z-
dc.date.available2025-03-27T14:09:05Z-
dc.date.issued2011-
dc.identifier.isbn9781457701221-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5517-
dc.description.abstractIn this paper we start with a family of boundary based shape measures I N(γ) = ∫ γ(x(s) 2 + y(s) 2) N ds, N = 1, 2, ..., defined for every curve γ given in an arc-length parametrisation x = x(s), y = y(s), s ε [0, 1] and placed such that the centroid of γ and the origin coincide. We prove I N(γ) ≤ 4 -N, for all N = 1, 2, ... which implies that the sequence I N(γ) converges quickly to 0 and, therefore the first few measures I N(γ) are most useful to compare shapes and to be applied in tasks like object classification, recognition or identification.en_US
dc.publisherIEEEen_US
dc.subjectobject classification | object recognition | Shape | shape descriptors | shape measuresen_US
dc.titleClassification/comparison of curves by an infinite family of shape invariantsen_US
dc.typeConference Paperen_US
dc.relation.conference1st Asian Conference on Pattern Recognition, ACPR 2011, 28-28 November 2011en_US
dc.identifier.doi10.1109/ACPR.2011.6166665-
dc.identifier.scopus2-s2.0-84862889431-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.description.rankM33-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.openairetypeConference Paper-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-1271-4153-
Show simple item record

Page view(s)

29
checked on Nov 26, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.