DC FieldValueLanguage
dc.contributor.authorŽunić, Jovišaen_US
dc.contributor.authorRosin, Paul L.en_US
dc.date.accessioned2025-03-27T14:09:05Z-
dc.date.available2025-03-27T14:09:05Z-
dc.date.issued2011-
dc.identifier.isbn9781457701221-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5517-
dc.description.abstractIn this paper we start with a family of boundary based shape measures I N(γ) = ∫ γ(x(s) 2 + y(s) 2) N ds, N = 1, 2, ..., defined for every curve γ given in an arc-length parametrisation x = x(s), y = y(s), s ε [0, 1] and placed such that the centroid of γ and the origin coincide. We prove I N(γ) ≤ 4 -N, for all N = 1, 2, ... which implies that the sequence I N(γ) converges quickly to 0 and, therefore the first few measures I N(γ) are most useful to compare shapes and to be applied in tasks like object classification, recognition or identification.en_US
dc.publisherIEEEen_US
dc.subjectobject classification | object recognition | Shape | shape descriptors | shape measuresen_US
dc.titleClassification/comparison of curves by an infinite family of shape invariantsen_US
dc.typeConference Paperen_US
dc.relation.conference1st Asian Conference on Pattern Recognition, ACPR 2011, 28-28 November 2011en_US
dc.identifier.doi10.1109/ACPR.2011.6166665-
dc.identifier.scopus2-s2.0-84862889431-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.description.rankM33-
item.fulltextNo Fulltext-
item.openairetypeConference Paper-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-1271-4153-
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.