DC FieldValueLanguage
dc.contributor.authorAcketa, Draganen_US
dc.contributor.authorŽunić, Jovišaen_US
dc.date.accessioned2025-03-27T14:00:26Z-
dc.date.available2025-03-27T14:00:26Z-
dc.date.issued1996-
dc.identifier.issn0350-1302-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5515-
dc.description.abstractThe concept of ``noisy'' straight line introduced by Melter and Rosenfeld is generalized and applied to digital cubic parabolas. It is proved that digital cubic parabola segments and their least square cubic parabola fits are in one-to-one correspondence. This leads to a constant space representation of a digital cubic parabola segment. One such representation is $(x_1,n,a,b,c,d)$, where $x_1$ and $n$ are the left endpoint and the number of digital points, respectively, while $a$, $b$, $c$ and $d$ are the coefficients of the least square cubic parabola fit $Y = aX^3+bX^2+cX+d$ for the given cubic parabola segment.en_US
dc.publisherMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.ispartofPublications de l'Institut Mathématiqueen_US
dc.titleA Constant Space Representation of Digital Cubic Parabolasen_US
dc.typeArticleen_US
dc.identifier.urlhttp://elib.mi.sanu.ac.rs/files/journals/publ/79/n073p169.pdf-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage169-
dc.relation.lastpage176-
dc.relation.issue73-
dc.relation.volume59-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-1271-4153-
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.