DC FieldValueLanguage
dc.contributor.authorBaralić, Đorđeen
dc.contributor.authorBlagojević, Pavleen
dc.contributor.authorKarasev, Romanen
dc.contributor.authorVučić, Aleksandaren
dc.date.accessioned2020-04-26T19:36:30Z-
dc.date.available2020-04-26T19:36:30Z-
dc.date.issued2018-11-01en
dc.identifier.issn0933-7741en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/550-
dc.description.abstractIn this paper, we study the Z/2 action on the real Grassmann manifolds Gn (R2n) and ∼Gn (R2n) given by taking the (appropriately oriented) orthogonal complement.We completely evaluate the relatedZ/2 Fadell-Husseini index utilizing a novel computation of the Stiefel-Whitney classes of the wreath product of a vector bundle. These results are used to establish the following geometric result about the orthogonal shadows of a convex body: For n = 2a (2b + 1), k = 2a+1-1, a convex body C in R 2n, and k real-valued functions α1, . . . , αk continuous on convex bodies in R2n with respect to the Hausdorff metric, there exists a subspace V ⊆ R 2n such that projections of C to V and its orthogonal complement V have the same value with respect to each function αi, that is, αi(pV(C)) = αi(pV (C)) for all 1 ≤ i ≤ k.en
dc.publisherde Gruyter-
dc.relationGeometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems-
dc.relationAdvanced Techniques of Cryptology, Image Processing and Computational Topology for Information Security-
dc.relationMathematical Sciences Research Institute (MSRI)-
dc.relationFederal professorship program, grant 1.456.2016/1.4-
dc.relationRussian Foundation for Basic Research, grant 18-01-00036-
dc.relation.ispartofForum Mathematicumen
dc.subjectCohomology of Grassmann manifolds | existence of equivariant maps | Fadell-Husseini ideal-valued indexen
dc.titleIndex of Grassmann manifolds and orthogonal shadowsen
dc.typeArticleen
dc.identifier.doi10.1515/forum-2018-0058en
dc.identifier.scopus2-s2.0-85052697900en
dc.relation.firstpage1539en
dc.relation.lastpage1572en
dc.relation.issue6en
dc.relation.volume30en
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-2836-7958-
crisitem.author.orcid0000-0003-3649-9897-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174008e.php-
crisitem.project.fundingProgramDirectorate for Education & Human Resources-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Education & Human Resources/1740089-
Show simple item record

SCOPUSTM   
Citations

1
checked on Jul 14, 2024

Page view(s)

90
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.