DC FieldValueLanguage
dc.contributor.authorMartinez-Ortiz, Carlosen_US
dc.contributor.authorŽunić, Jovišaen_US
dc.date.accessioned2025-03-27T13:04:27Z-
dc.date.available2025-03-27T13:04:27Z-
dc.date.issued2011-
dc.identifier.issn0096-3003-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5505-
dc.description.abstractIn this paper we show that the recently introduced family of the cubeness measures Cβ(S)(β>0) satisfy the following desirable property: limβ→∞Cβ(S)=0, for any given 3D shape S different from a cube. The result implies that the behaviour of cubeness measures changes depending on the selected value of β and the cubeness measure can be arbitrarily close to zero for a suitably large value of β. This also implies that for a suitable value of β, the measure Cβ(S) can be used for detecting small deviations of a shape from a perfect cube. Some examples are given to illustrate these properties.en_US
dc.publisherElsevieren_US
dc.relation.ispartofApplied Mathematics and Computationen_US
dc.subject3D shape | Compactness measure | Image processing | Shape descriptorsen_US
dc.titleMeasuring cubeness in the limit casesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.amc.2011.03.114-
dc.identifier.scopus2-s2.0-79956108871-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage8860-
dc.relation.lastpage8865-
dc.relation.issue21-
dc.relation.volume217-
dc.description.rankM21-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
crisitem.author.orcid0000-0002-1271-4153-
Show simple item record

SCOPUSTM   
Citations

1
checked on Apr 10, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.