DC FieldValueLanguage
dc.contributor.authorMartinez-Ortiz, Carlosen_US
dc.contributor.authorŽunić, Jovišaen_US
dc.date.accessioned2025-03-27T13:04:27Z-
dc.date.available2025-03-27T13:04:27Z-
dc.date.issued2011-
dc.identifier.issn0096-3003-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5505-
dc.description.abstractIn this paper we show that the recently introduced family of the cubeness measures Cβ(S)(β>0) satisfy the following desirable property: limβ→∞Cβ(S)=0, for any given 3D shape S different from a cube. The result implies that the behaviour of cubeness measures changes depending on the selected value of β and the cubeness measure can be arbitrarily close to zero for a suitably large value of β. This also implies that for a suitable value of β, the measure Cβ(S) can be used for detecting small deviations of a shape from a perfect cube. Some examples are given to illustrate these properties.en_US
dc.publisherElsevieren_US
dc.relation.ispartofApplied Mathematics and Computationen_US
dc.subject3D shape | Compactness measure | Image processing | Shape descriptorsen_US
dc.titleMeasuring cubeness in the limit casesen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.amc.2011.03.114-
dc.identifier.scopus2-s2.0-79956108871-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage8860-
dc.relation.lastpage8865-
dc.relation.issue21-
dc.relation.volume217-
dc.description.rankM21-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-1271-4153-
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 26, 2025

Page view(s)

54
checked on Nov 26, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.