DC FieldValueLanguage
dc.contributor.authorNgom, A.en_US
dc.contributor.authorStojmenovic, I.en_US
dc.contributor.authorŽunić, Jovišaen_US
dc.date.accessioned2025-03-27T11:32:01Z-
dc.date.available2025-03-27T11:32:01Z-
dc.date.issued1999-
dc.identifier.isbn0-7695-0161-3-
dc.identifier.issn0195-623X-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5492-
dc.description.abstractWe introduce the concept of multilinear partition of a point set V/spl sub/R/sup n/ and the concept of multilinear separability of a function f:V/spl rarr/K={0, ..., k-1}. Based on well known relationships between linear partitions and minimal pairs, we derive formulae for the number of multilinear partitions of a point set in general position and of the set K/sup 2/. The (n, k, s)-perceptrons partition the input space V into s+1 regions with s parallel hyperplanes. We obtain results on the capacity of a single (n, k, s)-perceptron, respectively for V/spl sub/R/sup n/ in general position and for V=K/sup 2/. Finally, we describe a fast polynomial-time algorithm for counting the multilinear partitions of K/sup 2/.en_US
dc.publisherIEEEen_US
dc.titleOn the number of multilinear partitions and the computing capacity of multiple-valued multiple-threshold perceptronsen_US
dc.typeConference Paperen_US
dc.relation.conferenceProceedings 1999 29th IEEE International Symposium on Multiple-Valued Logic, 20-22 May 1999en_US
dc.identifier.doi10.1109/ISMVL.1999.779718-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Paper-
crisitem.author.orcid0000-0002-1271-4153-
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.