DC Field | Value | Language |
---|---|---|
dc.contributor.author | Blagojević, Pavle | en |
dc.contributor.author | Ziegler, Günter | en |
dc.date.accessioned | 2020-04-26T19:36:30Z | - |
dc.date.available | 2020-04-26T19:36:30Z | - |
dc.date.issued | 2019-01-01 | en |
dc.identifier.issn | 0179-5376 | en |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/548 | - |
dc.description.abstract | The classical 1966 theorem of Tverberg with its numerous variations was and still is a motivating force behind many important developments in convex and computational geometry as well as a testing ground for methods from equivariant algebraic topology. In 2018, Bárány and Soberón presented a new variation, the “Tverberg plus minus theorem.” In this paper, we give a new proof of the Tverberg plus minus theorem, by using a projective transformation. The same tool allows us to derive plus minus analogues of all known affine Tverberg type results. In particular, we prove a plus minus analogue of the optimal colored Tverberg theorem. | en |
dc.publisher | Springer Link | - |
dc.relation | Methods of Functional and Harmonic Analysis and PDE with Singularities | - |
dc.relation.ispartof | Discrete and Computational Geometry | en |
dc.subject | Colored Tverberg theorem | Projective transformations | Tverberg plus minus | Tverberg theorem | en |
dc.title | Plus Minus Analogues for Affine Tverberg Type Results | en |
dc.type | Article | en |
dc.identifier.doi | 10.1007/s00454-019-00120-y | en |
dc.identifier.scopus | 2-s2.0-85070097474 | en |
dc.description.rank | M22 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
crisitem.project.funder | MESTD | - |
crisitem.project.fundingProgram | Basic Research (BR or ON) | - |
crisitem.project.openAire | info:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174024 | - |
crisitem.author.orcid | 0000-0003-3649-9897 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.