DC FieldValueLanguage
dc.contributor.authorBlagojević, Pavleen
dc.contributor.authorRote, Günteren
dc.contributor.authorSteinmeyer, Johannaen
dc.contributor.authorZiegler, Günteren
dc.date.accessioned2020-04-26T19:36:29Z-
dc.date.available2020-04-26T19:36:29Z-
dc.date.issued2019-03-15en
dc.identifier.issn0179-5376en
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/546-
dc.description.abstractWe show that any d-colored set of points in general position in Rd can be partitioned into n subsets with disjoint convex hulls such that the set of points and all color classes are partitioned as evenly as possible. This extends results by Holmsen, Kynčl & Valculescu (Comput Geom 65:35–42, 2017) and establishes a special case of their general conjecture. Our proof utilizes a result obtained independently by Soberón and by Karasev in 2010, on simultaneous equipartitions of d continuous measures in Rd by n convex regions. This gives a convex partition of Rd with the desired properties, except that points may lie on the boundaries of the regions. In order to resolve the ambiguous assignment of these points, we set up a network flow problem. The equipartition of the continuous measures gives a fractional flow. The existence of an integer flow then yields the desired partition of the point set.en
dc.publisherSpringer Link-
dc.relationAdvanced Techniques of Cryptology, Image Processing and Computational Topology for Information Security-
dc.relation.ispartofDiscrete and Computational Geometryen
dc.subjectConvex partitions | Discretization | Integer rounding of flows | Point setsen
dc.titleConvex Equipartitions of Colored Point Setsen
dc.typeArticleen
dc.identifier.doi10.1007/s00454-017-9959-7en
dc.identifier.scopus2-s2.0-85039076319en
dc.relation.firstpage355en
dc.relation.lastpage363en
dc.relation.issue2en
dc.relation.volume61en
dc.description.rankM22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.project.projectURLhttp://www.mi.sanu.ac.rs/novi_sajt/research/projects/174008e.php-
crisitem.project.fundingProgramDirectorate for Education & Human Resources-
crisitem.project.openAireinfo:eu-repo/grantAgreement/NSF/Directorate for Education & Human Resources/1740089-
crisitem.author.orcid0000-0003-3649-9897-
Show simple item record

SCOPUSTM   
Citations

6
checked on Nov 23, 2024

Page view(s)

16
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.