| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Farah, Ilijas | en_US |
| dc.contributor.author | Ghasemi, Saeed | en_US |
| dc.date.accessioned | 2024-12-19T10:40:13Z | - |
| dc.date.available | 2024-12-19T10:40:13Z | - |
| dc.date.issued | 2024-01-01 | - |
| dc.identifier.issn | 0030-8730 | - |
| dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/5420 | - |
| dc.description | 24 pages. various minor improvements. To appear in Pacific J. Math | en_US |
| dc.description.abstract | Tensoring with type I algebras preserves elementary equivalence in the category of tracial von Neumann algebras. The proof involves a novel and general Feferman–Vaught-type theorem for direct integrals of metric structures. | en_US |
| dc.publisher | Mathematical Sciences Publishers | en_US |
| dc.relation.ispartof | Pacific Journal of Mathematics | en_US |
| dc.subject | continuous logic | direct integrals | Feferman–Vaught theorem | preservation of elementarity | type II von Neumann algebras 1; Mathematics - Logic; Mathematics - Logic; Mathematics - Operator Algebras | en_US |
| dc.title | PRESERVATION OF ELEMENTARITY BY TENSOR PRODUCTS OF TRACIAL VON NEUMANN ALGEBRAS | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.2140/pjm.2024.332.91 | - |
| dc.identifier.scopus | 2-s2.0-85211137270 | - |
| dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | en_US |
| dc.relation.firstpage | 91 | - |
| dc.relation.lastpage | 113 | - |
| dc.relation.issue | 1 | - |
| dc.relation.volume | 332 | - |
| dc.description.rank | ~M22 | - |
| item.cerifentitytype | Publications | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.fulltext | No Fulltext | - |
| item.openairetype | Article | - |
| item.grantfulltext | none | - |
| crisitem.author.orcid | 0000-0001-7703-6931 | - |
SCOPUSTM
Citations
3
checked on Nov 26, 2025
Page view(s)
116
checked on Nov 26, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.