DC FieldValueLanguage
dc.contributor.authorTodorčević, Stevoen_US
dc.contributor.authorZhang, Jingen_US
dc.date.accessioned2024-12-19T10:34:45Z-
dc.date.available2024-12-19T10:34:45Z-
dc.date.issued2024-01-01-
dc.identifier.issn0219-0613-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5419-
dc.description.abstractWe investigate higher dimensional chain conditions, where the largeness notion is given by Fubini products of a given ideal. From strong saturation properties of an ideal, we derive abstractly versions of higher dimensional Δ-system lemma, which imply many posets, including any finite support iteration of σ-centered posets and measure algebras, satisfy the higher dimensional chain conditions. We then show that if a poset satisfies a strengthening of the σ-finite chain condition by Horn and Tarski, then it satisfies higher dimensional chain conditions. As an application, we derive Ramsey-theoretic consequences, namely various partition hypotheses as studied by Bannister, Bergfalk, Moore and Todorcevic, from the existence of ideals satisfying strong chain conditions.en_US
dc.publisherWorld Scientificen_US
dc.relation.ispartofJournal of Mathematical Logicen_US
dc.subjectchain condition | forcing | partition relations | Saturated ideal | Δ-system lemmaen_US
dc.titleHigher dimensional chain conditionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0219061324500326-
dc.identifier.scopus2-s2.0-85210903304-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage2450032-
dc.description.rank~M21a-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-4543-7962-
Show simple item record

Page view(s)

8
checked on Dec 27, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.