Authors: Gasiorek, Sean
Radnović, Milena
Affiliations: Mechanics 
Mathematical Institute of the Serbian Academy of Sciences and Arts 
Title: Periodic trajectories and topology of the integrable Boltzmann system
Series/Report no.: Contemporary Mathematics
Volume: 807
First page: 111
Last page: 130
Related Publication(s): Recent Progress in Special Functions
Issue Date: 1-Jan-2024
ISBN: 978-1-4704-7722-6
978-1-4704-7429-4
ISSN: 0271-4132
DOI: 10.1090/conm/807/16168
Abstract: 
We consider the Boltzmann system corresponding to the motion of a billiard with a linear boundary under the influence of a gravitational field. We derive analytic conditions of Cayley’s type for periodicity of its trajectories and provide geometric descriptions of caustics. The topology of the phase space is discussed using Fomenko graphs.
Keywords: billiards | Fomenko graphs | Integrable Boltzmann system | Kepler problem | periodic trajectories | Poncelet theorem
Publisher: American Mathematical Society

Show full item record

Page view(s)

7
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.