DC FieldValueLanguage
dc.contributor.authorLindström, Mikaelen_US
dc.contributor.authorNorrbo, Daviden_US
dc.contributor.authorStević, Stevoen_US
dc.date.accessioned2024-12-18T10:23:48Z-
dc.date.available2024-12-18T10:23:48Z-
dc.date.issued2024-
dc.identifier.issn1846-579X-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5410-
dc.description.abstractWe investigate a widely used application of compactness of bounded linear operators T: X(\BbbB) → Y, where X(\BbbB) is a Banach space of holomorphic functions on the open unit ball \BbbB ⊂ CN and Y is a Banach space. In particular, we show that compactness of the operator when X(\BbbB) is not reflexive, is not a sufficient condition for the property that every bounded sequence (fn)n∈N in X(\BbbB) such that fn → 0 with respect to the compact open topology as n → ∞, implies that T(fn) → 0 with respect to the norm of Y as n → ∞.en_US
dc.publisherElement D.O.O.en_US
dc.relation.ispartofJournal of Mathematical Inequalitiesen_US
dc.rightsAttribution 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectbounded operator | compact open topology | Compact operator | spaces of holomorphic functionsen_US
dc.titleON COMPACTNESS OF OPERATORS FROM BANACH SPACES OF HOLOMORPHIC FUNCTIONS TO BANACH SPACESen_US
dc.typeArticleen_US
dc.identifier.doi10.7153/jmi-2024-18-64-
dc.identifier.scopus2-s2.0-85206094084-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage1153-
dc.relation.lastpage1158-
dc.relation.issue3-
dc.relation.volume18-
dc.description.rank~M21a-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-7202-9764-
Files in This Item:
File Description SizeFormat
SStevic.pdf162.28 kBAdobe PDFView/Open
Show simple item record

Page view(s)

7
checked on Dec 22, 2024

Download(s)

4
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons