DC FieldValueLanguage
dc.contributor.authorDragović, Vladimiren_US
dc.contributor.authorStošić, Markoen_US
dc.date.accessioned2024-12-12T13:27:36Z-
dc.date.available2024-12-12T13:27:36Z-
dc.date.issued2024-10-01-
dc.identifier.issn0002-9939-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5406-
dc.description.abstractStarting from billiard partitions which arose recently in the description of periodic trajectories of ellipsoidal billiards in d-dimensional Euclidean space, we introduce a new type of separable integer partition classes, called type B. We study the numbers of basis partitions with d parts and relate them to the Fibonacci sequence and its natural generalizations. Remarkably, the generating series of basis partitions can be related to the quiver generating series of symmetric quivers corresponding to the framed unknot via knots-quivers correspondence, and to the count of Schröder paths.en_US
dc.publisherAmerican Mathematical Societyen_US
dc.relation.ispartofProceedings of the American Mathematical Societyen_US
dc.subjectbasis partitions | Billiard partitions | Donaldson-Thomas invariants | Fibonacci sequence | Lucas sequences | quivers | Schröder paths | SIP classes | type A SIP classes | type B SIP classesen_US
dc.titleBILLIARD PARTITIONS, FIBONACCI SEQUENCES, SIP CLASSES, AND QUIVERSen_US
dc.typeArticleen_US
dc.identifier.doi10.1090/proc/16918-
dc.identifier.scopus2-s2.0-85203587085-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage4141-
dc.relation.lastpage4154-
dc.relation.issue10-
dc.relation.volume152-
dc.description.rank~M22-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-0295-4743-
crisitem.author.orcid0000-0002-4464-396X-
Show simple item record

Page view(s)

26
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.