DC FieldValueLanguage
dc.contributor.authorDragović, Vladimiren_US
dc.contributor.authorRadnović, Milenaen_US
dc.date.accessioned2024-11-25T13:17:35Z-
dc.date.available2024-11-25T13:17:35Z-
dc.date.issued2025-
dc.identifier.issn0951-7715-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5398-
dc.description.abstractUsing Marden’s Theorem from geometric theory of polynomials, we show that for every triangle there is a unique ellipse such that the triangle is a billiard trajectory within that ellipse. Since 3-periodic trajectories of billiards within ellipses are examples of the Poncelet polygons, our considerations provide a new insight into the relationship between Marden’s Theorem and the Poncelet Porism, two gems of exceptional classical beauty. We also show that every parallelogram is a billiard trajectory within a unique ellipse. We prove a similar result for the self-intersecting polygonal lines consisting of two pairs of congruent sides, named ‘Darboux butterflies’. In each of three considered cases, we effectively calculate the foci of the boundary ellipses.en_US
dc.publisherIOPScienceen_US
dc.relation.ispartofNonlinearityen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/*
dc.subjectMathematics - Dynamical Systems; Mathematics - Dynamical Systems; Mathematical Physics; Mathematics - Complex Variables; Mathematics - Metric Geometry; Mathematics - Mathematical Physics; Nonlinear Sciences - Exactly Solvable and Integrable Systems; 51N20, 30C15, 37J35, 70H06en_US
dc.titleIs every triangle a trajectory of an elliptical billiard?en_US
dc.typeArticleen_US
dc.identifier.scopus2-s2.0-85218969369-
dc.contributor.affiliationMechanicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.issue3-
dc.relation.volume38-
dc.description.rankM21-
item.openairetypeArticle-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0002-0295-4743-
Show simple item record

SCOPUSTM   
Citations

1
checked on Jan 9, 2026

Page view(s)

81
checked on Jan 10, 2026

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons