DC FieldValueLanguage
dc.contributor.authorGasiorek, Seanen_US
dc.contributor.authorRadnović, Milenaen_US
dc.date.accessioned2024-11-25T13:02:39Z-
dc.date.available2024-11-25T13:02:39Z-
dc.date.issued2021-
dc.identifier.issn0393-0440-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5396-
dc.description.abstractWe consider a billiard problem for compact domains bounded by confocal conics on a hyperboloid of one sheet in the Minkowski space. We show that there are two types of confocal families in such setting. Using an algebro-geometric integration technique, we prove that the billiard within generalized ellipses of each type is integrable in the sense of Liouville. Further, we prove a generalization of the Poncelet theorem and derive Cayley-type conditions for periodic trajectories and explore geometric consequences.en_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Geometry and Physicsen_US
dc.subjectBilliards | Confocal quadrics | Elliptic billiards | Geodesics | Minkowski space | Periodic trajectories; Mathematics - Dynamical Systems; Mathematics - Dynamical Systems; 70H06, 70H12, 37J35, 37J46 (Primary) 14H70, 37J38, 37J39 (Secondary)en_US
dc.titlePseudo-Euclidean billiards within confocal curves on the hyperboloid of one sheeten_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.geomphys.2020.104032-
dc.identifier.scopus2-s2.0-85097741882-
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage104032-
dc.relation.volume161-
dc.description.rankM21-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Show simple item record

SCOPUSTM   
Citations

3
checked on Apr 2, 2025

Page view(s)

23
checked on Jan 31, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.