Authors: Babić, Marijana 
Affiliations: Mechanics 
Mathematical Institute of the Serbian Academy of Sciences and Arts 
Title: GEODESICS OF RIEMANNIAN COMPLEX HYPERBOLIC PLANE
Journal: Matematicki Vesnik
Volume: 76
Issue: 1-2
First page: 105
Last page: 117
Issue Date: 1-Jan-2024
Rank: M24
ISSN: 0025-5165
DOI: 10.57016/MV-MsnU3893
Abstract: 
The complex hyperbolic plane is a symmetric space of negative sectional curvature; hence, it has the structure of a 4-dimensional connected solvable real Lie group with a left-invariant metric. We consider all non-isometric left-invariant Riemannian metrics on this group, denoted by CH2, and search for real geodesics corresponding to them. Using Euler-Arnold equations, one can translate the second-order differential equations of the geodesics on the group into the first-order equations on its Lie algebra. In the Kähler case we solve these equations on the Lie algebra of CH2, i.e. we explicitly find curves on algebra corresponding to the geodesics of the standard Einstein metric. Numerical solutions are used to visualize geodesic lines and geodesic spheres of various left-invariant Riemannian metrics.
Keywords: Complex hyperbolic plane | Euler-Arnold equations | geodesic lines | geodesic spheres | left-invariant metric
Publisher: Beograd : Društvo matematičara Srbije

Files in This Item:
File Description SizeFormat
MBabic.pdf858.15 kBAdobe PDFView/Open
Show full item record

Page view(s)

24
checked on Dec 6, 2024

Download(s)

2
checked on Dec 6, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons