DC FieldValueLanguage
dc.contributor.authorStević, Stevoen_US
dc.date.accessioned2024-06-25T11:46:51Z-
dc.date.available2024-06-25T11:46:51Z-
dc.date.issued2024-04-01-
dc.identifier.issn0170-4214-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5313-
dc.description.abstractWe introduce the general polynomial differentiation composition operator (Formula presented.) where (Formula presented.), (Formula presented.), (Formula presented.), are holomorphic functions on the open unit disk (Formula presented.) and (Formula presented.), (Formula presented.), are holomorphic self-maps of (Formula presented.), calculate norm of the operator acting from the space of Cauchy transforms to the (Formula presented.) th weighted-type space, and characterize its boundedness, as well as the boundedness of the operator acting from the space of Cauchy transforms to the little (Formula presented.) th weighted-type space.en_US
dc.publisherWileyen_US
dc.relation.ispartofMathematical Methods in the Applied Sciencesen_US
dc.subjectbounded operator | mth weighted-type space | operator norm | polynomial differentiation composition operator | space of Cauchy transformsen_US
dc.titleNorm of the general polynomial differentiation composition operator from the space of Cauchy transforms to the mth weighted-type space on the unit disken_US
dc.typeArticleen_US
dc.identifier.doi10.1002/mma.9681-
dc.identifier.scopus2-s2.0-85182495728-
dc.contributor.affiliationMathematicsen_US
dc.relation.firstpage3893-
dc.relation.lastpage3902-
dc.relation.issue6-
dc.relation.volume47-
dc.description.rank~M21-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

SCOPUSTM   
Citations

1
checked on Nov 19, 2024

Page view(s)

27
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.