DC FieldValueLanguage
dc.contributor.authorMateljević, Miodragen_US
dc.contributor.authorMutavdžić, Nikolaen_US
dc.date.accessioned2024-06-25T11:32:23Z-
dc.date.available2024-06-25T11:32:23Z-
dc.date.issued2024-03-01-
dc.identifier.issn1050-6926-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5311-
dc.description.abstractWe solve the Dirichlet problem u|Bn=φ, for hyperbolic Poisson’s equation Δ hu= μ where φ∈ L1(∂Bn) and μ is a measure that satisfies a growth condition. Next we present a short proof for Lipschitz continuity of solutions of certain hyperbolic Poisson’s equations, previously established at Chen et al. (Calc Var 57:13, 2018. https://doi.org/10.1007/s00526-017-1290-x). In addition, we investigate some alternative assumptions on hyperbolic Laplacian, which are connected with Riesz’s potential. Also, local Hölder continuity is proved for solution of certain hyperbolic Poisson’s equations. We show that, if u is hyperbolic harmonic in the upper half-space, then ∂u∂y(x0,y)→0,y→0+ , when boundary function f of the functions u is differentiable at the boundary point x . As a corollary, we show C1(Hn¯) smoothness of a hyperbolic harmonic function, which is reproduced from the Cc1(Rn-1) boundary values.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofJournal of Geometric Analysisen_US
dc.subjectBoundary behavior | Hyperbolic harmonic functions | Lipschitz continuityen_US
dc.titleOn Lipschitz Continuity and Smoothness Up to the Boundary of Solutions of Hyperbolic Poisson’s Equationen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s12220-023-01459-8-
dc.identifier.scopus2-s2.0-85182706129-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage83-
dc.relation.issue3-
dc.relation.volume34-
dc.description.rank~M22-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0009-0007-7210-8212-
Show simple item record

Page view(s)

18
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.