| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Dragović, Vladimir | en_US |
| dc.contributor.author | Mironov, Andrey E. | en_US |
| dc.date.accessioned | 2024-06-25T09:20:45Z | - |
| dc.date.available | 2024-06-25T09:20:45Z | - |
| dc.date.issued | 2024-01-01 | - |
| dc.identifier.issn | 1439-8516 | - |
| dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/5309 | - |
| dc.description.abstract | We introduce a method to find differential equations for functions which define tables, such that associated billiard systems admit a local first integral. We illustrate this method in three situations: the case of (locally) integrable wire billiards, for finding surfaces in ℝ3 with a first integral of degree one in velocities, and for finding a piece-wise smooth surface in ℝ3 homeomorphic to a torus, being a table of a billiard admitting two additional first integrals. | en_US |
| dc.publisher | Springer Link | en_US |
| dc.relation.ispartof | Acta Mathematica Sinica, English Series | en_US |
| dc.subject | 37C83 | 37J35 | 70H06 | piece-wise smooth surfaces | Polynomial first integrals | wire billiards | en_US |
| dc.title | On Differential Equations of Integrable Billiard Tables | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1007/s10114-024-2450-5 | - |
| dc.identifier.scopus | 2-s2.0-85181449941 | - |
| dc.contributor.affiliation | Mechanics | en_US |
| dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | en_US |
| dc.relation.firstpage | 417 | - |
| dc.relation.lastpage | 424 | - |
| dc.relation.issue | 1 | - |
| dc.relation.volume | 40 | - |
| dc.description.rank | ~M23 | - |
| item.cerifentitytype | Publications | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.fulltext | No Fulltext | - |
| item.openairetype | Article | - |
| item.grantfulltext | none | - |
| crisitem.author.orcid | 0000-0002-0295-4743 | - |
SCOPUSTM
Citations
1
checked on Nov 24, 2025
Page view(s)
87
checked on Nov 24, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.