DC FieldValueLanguage
dc.contributor.authorJovanović, Božidaren_US
dc.contributor.authorŠukilović, Tijanaen_US
dc.contributor.authorVukmirović, Srđanen_US
dc.date.accessioned2024-06-24T08:57:13Z-
dc.date.available2024-06-24T08:57:13Z-
dc.date.issued2023-01-01-
dc.identifier.issn1560-3547-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5300-
dc.description.abstractIn 1983 Bogoyavlenski conjectured that, if the Euler equations on a Lie algebra g are integrable, then their certain extensions to semisimple lie algebras g related to the filtrations of Lie algebras (Formula presented.)are integrable as well.In particular, by taking g0={0} and natural filtrations of so(n) and u(n), we haveGel’fand – Cetlin integrable systems. We prove the conjecturefor filtrations of compact Lie algebras g: the system is integrable in a noncommutative sense by means of polynomial integrals. Various constructions of complete commutative polynomial integrals for the system are also given.en_US
dc.publisherSpringer Linken_US
dc.relationProject 7744592 MEGIC, Integrability and Extremal Problems in Mechanics, Geometry and Combinatorics, of the Science Fund of Serbiaen_US
dc.relation.ispartofRegular and Chaotic Dynamicsen_US
dc.subjectGel’fand – Cetlin systems | invariant polynomials | noncommutative integrability; Nonlinear Sciences - Exactly Solvable and Integrable Systems; Nonlinear Sciences - Exactly Solvable and Integrable Systems; Mathematics - Group Theory; Mathematics - Symplectic Geometry; 37J35, 17B63, 17B80, 53D20en_US
dc.titleIntegrable Systems Associated to the Filtrations of Lie Algebrasen_US
dc.typeArticleen_US
dc.identifier.doi10.1134/S1560354723010045-
dc.identifier.scopus2-s2.0-85178491057-
dc.contributor.affiliationMechanicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage44-
dc.relation.lastpage61-
dc.relation.issue1-
dc.relation.volume28-
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-3393-4323-
Show simple item record

SCOPUSTM   
Citations

1
checked on Dec 20, 2024

Page view(s)

24
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.