DC FieldValueLanguage
dc.contributor.authorLimonchenko, Ivanen_US
dc.date.accessioned2024-02-02T13:58:41Z-
dc.date.available2024-02-02T13:58:41Z-
dc.date.issued2013-
dc.identifier.issn0001-4346-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5283-
dc.description.abstractThe bigraded Betti numbers β−i,2j (P ) of a simple polytope P are the dimensions of the bigraded components of the Tor groups of the face ring k[P ]. The numbers β−i,2j (P ) reflect the combinatorial structure of P , as well as the topological structure of the corresponding moment-angle manifold ZP ; thus, they find numerous applications in combinatorial commutative algebra and toric topology. We calculate certain bigraded Betti numbers of the type β−i,2(i+1) for associahedra and apply the calculation of bigraded Betti numbers for truncation polytopes to study the topology of their moment-angle manifolds. Presumably, for these two series of simple polytopes, the numbers β−i,2j (P ) attain their minimum and maximum values among all simple polytopes P of fixed dimension with a given number of facets.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofMathematical Notesen_US
dc.subjectbigraded Betti numbers of a simple polytope | simple convex polytope | Stasheff polytope | associahedron | truncation polytope | stacked polytope | moment-angle manifolden_US
dc.titleBigraded Betti numbers of certain simple polytopesen_US
dc.typeArticleen_US
dc.identifier.doi10.1134/S000143461309006X-
dc.relation.firstpage351-
dc.relation.lastpage363-
dc.relation.volume94-
dc.description.rankM23-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-2072-8475-
Show simple item record

SCOPUSTM   
Citations

1
checked on Dec 20, 2024

Page view(s)

17
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.