DC FieldValueLanguage
dc.contributor.authorLimonchenko, Ivanen_US
dc.date.accessioned2024-02-02T13:53:34Z-
dc.date.available2024-02-02T13:53:34Z-
dc.date.issued2014-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5282-
dc.description.abstractWe consider simple polytopes P = vck(Δn1 × . . . × Δnr ) for n1 ≥ . . . ≥ nr ≥ 1, r ≥ 1, and k ≥ 0, that is, k-vertex cuts of a product of simplices, and call them generalized truncation polytopes. For these polytopes we describe the cohomology ring of the corresponding moment–angle manifold ZP and explore some topological consequences of this calculation. We also examine minimal non-Golodness for their Stanley–Reisner rings and relate it to the property of ZP being a connected sum of sphere products.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofProceedings of the Steklov Institute of Mathematicsen_US
dc.titleStanley Reisner rings of generalized truncation polytopes and their moment angle manifoldsen_US
dc.typeArticleen_US
dc.identifier.doi10.1134/S0081543814060091-
dc.relation.firstpage188-
dc.relation.lastpage197-
dc.relation.volume286-
dc.description.rankM23-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-2072-8475-
Show simple item record

SCOPUSTM   
Citations

4
checked on Dec 20, 2024

Page view(s)

16
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.