DC FieldValueLanguage
dc.contributor.authorLimonchenko, Ivanen_US
dc.date.accessioned2024-02-02T13:17:52Z-
dc.date.available2024-02-02T13:17:52Z-
dc.date.issued2017-
dc.identifier.issn0252-9599-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5279-
dc.description.abstractThe author constructs a family of manifolds, one for each n ≥ 2, having a nontrivial Massey n-product in their cohomology for any given n. These manifolds turn out to be smooth closed 2-connected manifolds with a compact torus Tm-action called moment-angle manifolds ZP, whose orbit spaces are simple n-dimensional polytopes P obtained from an n-cube by a sequence of truncations of faces of codimension 2 only (2-truncated cubes). Moreover, the polytopes P are flag nestohedra but not graph-associahedra. The author also describes the numbers β−i,2(i+1)(Q) for an associahedron Q in terms of its graph structure and relates it to the structure of the loop homology (Pontryagin algebra) H*(ΩZQ), and then studies higher Massey products in H*(ZQ) for a graph-associahedron Q.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofChinese Annals of Mathematics. Series Ben_US
dc.subjectFlag nestohedra | Graph-associahedron | Massey products | Moment-angle manifold | Stanley-Reisner ringen_US
dc.titleTopology of moment-angle manifolds arising from flag nestohedraen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11401-017-1037-1-
dc.identifier.scopus2-s2.0-85033709284-
dc.relation.firstpage1287-
dc.relation.lastpage1302-
dc.relation.volume38-
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-2072-8475-
Show simple item record

SCOPUSTM   
Citations

7
checked on Dec 20, 2024

Page view(s)

13
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.