DC FieldValueLanguage
dc.contributor.authorLimonchenko, Ivanen_US
dc.date.accessioned2024-02-02T13:06:14Z-
dc.date.available2024-02-02T13:06:14Z-
dc.date.issued2019-
dc.identifier.issn0081-5438-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5277-
dc.description.abstractWe prove that certain conditions on multigraded Betti numbers of a simplicial complex K imply the existence of a higher Massey product in the cohomology of a moment-angle complex ZK, and this product contains a unique element (a strictly defined product). Using the simplicial multiwedge construction, we find a family ℱ of polyhedral products being smooth closed manifolds such that for any l, r ≥ 2 there exists an l-connected manifold M∈ ℱ with a nontrivial strictly defined r-fold Massey product in H*(M). As an application to homological algebra, we determine a wide class of triangulated spheres K such that a nontrivial higher Massey product of any order may exist in the Koszul homology of their Stanley–Reisner rings. As an application to rational homotopy theory, we establish a combinatorial criterion for a simple graph Γ to provide a (rationally) formal generalized moment-angle manifold ZPJ=(D¯2ji,S¯2ji−1)∂P*J = (j1,…,jm), over a graph-associahedron P = PΓ, and compute all the diffeomorphism types of formal moment-angle manifolds over graph-associahedra.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofProceedings of the Steklov Institute of Mathematicsen_US
dc.titleOn Higher Massey Products and Rational Formality for Moment—Angle Manifolds over Multiwedgesen_US
dc.typeArticleen_US
dc.identifier.doi10.1134/S008154381903009X-
dc.identifier.scopus2-s2.0-85073630894-
dc.relation.firstpage161-
dc.relation.lastpage181-
dc.relation.volume305-
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-2072-8475-
Show simple item record

SCOPUSTM   
Citations

4
checked on Dec 20, 2024

Page view(s)

12
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.