DC FieldValueLanguage
dc.contributor.authorLimonchenko, Ivanen_US
dc.contributor.authorPanov, T. E.en_US
dc.contributor.authorChernykh, G.en_US
dc.date.accessioned2024-02-02T12:57:51Z-
dc.date.available2024-02-02T12:57:51Z-
dc.date.issued2019-
dc.identifier.issn0036-0279-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5276-
dc.description.abstractThe first part of this survey gives a modernised exposition of the structure of the special unitary bordism ring, by combining the classical geometric methods of Conner–Floyd, Wall, and Stong with the Adams–Novikov spectral sequence and formal group law techniques that emerged after the fundamental 1967 paper of Novikov. In the second part toric topology is used to describe geometric representatives in SU-bordism classes, including toric, quasi-toric, and Calabi–Yau manifolds.en_US
dc.publisherRussian Academy of Sciencesen_US
dc.relation.ispartofRussian Mathematical Surveysen_US
dc.subjectspecial unitary bordism | SU-manifolds | Chern classes | toric varieties | quasi-toric manifolds | Calabi–Yau manifoldsen_US
dc.titleSU-bordism: structure results and geometric representativesen_US
dc.typeArticleen_US
dc.identifier.doi10.1070/RM9883-
dc.relation.firstpage461-
dc.relation.lastpage524-
dc.relation.issue3-
dc.relation.volume74-
dc.description.rankM21a-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-2072-8475-
Show simple item record

SCOPUSTM   
Citations

5
checked on Jun 15, 2024

Page view(s)

32
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.