DC FieldValueLanguage
dc.contributor.authorKhovanskii, Askolden_US
dc.contributor.authorLimonchenko, Ivanen_US
dc.contributor.authorMonin, Leoniden_US
dc.date.accessioned2024-02-02T11:37:18Z-
dc.date.available2024-02-02T11:37:18Z-
dc.date.issued2022-01-01-
dc.identifier.issn0354-5180-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5270-
dc.description.abstractThe classical Bernstein-Kushnirenko-Khovanskii theorem (or, the BKK theorem, for short) computes the intersection number of divisors on toric variety in terms of volumes of corresponding polytopes. In [PK92b], it was observed by Pukhlikov and the first author that the BKK theorem leads to a presentation of the cohomology ring of a toric variety as a quotient of a ring of differential operators with constant coefficients by the annihilator of an explicit polynomial. In this paper we generalize this construction to the case of quasitoric bundles. These are fiber bundles with generalized quasitoric manifolds as fibers. First we obtain a generalization of the BKK theorem to this case. Then we use recently obtained descriptions of the graded-commutative algebras which satisfy Poincaré duality to give a description of cohomology rings of quasitoric bundles.en_US
dc.publisherUniversity of Nišen_US
dc.relation.ispartofFilomaten_US
dc.subjectmoment-angle-complexes | quasitoric bundles | Quasitoric manifolds | Stanley-Reisner ringsen_US
dc.titleCohomology Rings of Quasitoric Bundlesen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/FIL2219513K-
dc.identifier.scopus2-s2.0-85146783627-
dc.relation.firstpage6513-
dc.relation.lastpage6537-
dc.relation.issue19-
dc.relation.volume36-
dc.description.rankM22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-2072-8475-
Show simple item record

Page view(s)

12
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.