DC FieldValueLanguage
dc.contributor.authorDinčić, Nebojša Č.en_US
dc.contributor.authorĐorđević, Bogdanen_US
dc.date.accessioned2023-12-27T12:31:59Z-
dc.date.available2023-12-27T12:31:59Z-
dc.date.issued2023-
dc.identifier.isbn978-3-031-25385-0-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5263-
dc.description.abstractThis chapter represents a comprehensive analysis of the matrix equation AXA = XAX. We revise some of our published results regarding this topic and provide some new original unpublished results. In particular, we revisit our methods for constructing infinitely many nontrivial solutions, for both regular and singular matrix A, and we revisit our characterization of all permutation and doubly stochastic solutions when A is a permutation matrix. Additionally, we prove new results which concern the case when A is invertible: we obtain the closed-form formula for all commuting solutions and characterize the existence of non-commuting solutions (these conditions cannot be weakened). We also provide an alternative way for proving the existence of doubly stochastic solutions when A is a permutation matrix.en_US
dc.publisherSpringer Linken_US
dc.relationMinistry of Education, Science and Technological Development, Republic of Serbia, Grant No. 451-03-68/2022-14/200029 and by the bilateral project between Serbia and Slovenia (Generalized inverses, operator equations and applications, Grant No. 337-00-21/2020-09/32)en_US
dc.relation.ispartofseriesMathematics Online First Collectionsen_US
dc.subjectYang-Baxter-like matrix equation | Sylvester equation | Matrix functionsen_US
dc.titleYang-Baxter-Like Matrix Equation: A Road Less Takenen_US
dc.typeBook Chapteren_US
dc.relation.publicationMatrix and Operator Equations and Applicationsen_US
dc.identifier.doi10.1007/16618_2023_49-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage241-
dc.relation.lastpage346-
dc.description.rankM13-
item.grantfulltextnone-
item.openairetypeBook Chapter-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-6751-6867-
Show simple item record

Page view(s)

27
checked on Dec 3, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.