DC FieldValueLanguage
dc.contributor.authorIlić Stepić, Angelinaen_US
dc.contributor.authorOgnjanović, Zoranen_US
dc.contributor.authorPerović, Aleksandaren_US
dc.date.accessioned2023-12-21T13:28:21Z-
dc.date.available2023-12-21T13:28:21Z-
dc.date.issued2024-
dc.identifier.issn0039-3215-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5256-
dc.description.abstractWe offer an alternative approach to the existing methods for intuitionistic formalization of reasoning about probability. In terms of Kripke models, each possible world is equipped with a structure of the form ⟨ H, μ⟩ that needs not be a probability space. More precisely, though H needs not be a Boolean algebra, the corresponding monotone function (we call it measure) μ: H⟶ [0 , 1] Q satisfies the following condition: if α , β , α∧ β , α∨ β∈ H , then μ(α∨ β) = μ(α) + μ(β) - μ(α∧ β) . Since the range of μ is the set [0 , 1] Q of rational numbers from the real unit interval, our logic is not compact. In order to obtain a strong complete axiomatization, we introduce an infinitary inference rule with a countable set of premises. The main technical results are the proofs of strong completeness and decidability.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofStudia Logicaen_US
dc.subjectIntuitionistic | Logicen_US
dc.titleThe Logic ILP for Intuitionistic Reasoning About Probabilityen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s11225-023-10084-z-
dc.identifier.scopus2-s2.0-85178894445-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage987-
dc.relation.lastpage1017-
dc.relation.volume112-
dc.description.rank~M21-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-9771-1196-
crisitem.author.orcid0000-0003-2508-6480-
Show simple item record

Page view(s)

28
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.