DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ilić Stepić, Angelina | en_US |
dc.contributor.author | Ognjanović, Zoran | en_US |
dc.contributor.author | Perović, Aleksandar | en_US |
dc.date.accessioned | 2023-12-21T13:28:21Z | - |
dc.date.available | 2023-12-21T13:28:21Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 0039-3215 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/5256 | - |
dc.description.abstract | We offer an alternative approach to the existing methods for intuitionistic formalization of reasoning about probability. In terms of Kripke models, each possible world is equipped with a structure of the form ⟨ H, μ⟩ that needs not be a probability space. More precisely, though H needs not be a Boolean algebra, the corresponding monotone function (we call it measure) μ: H⟶ [0 , 1] Q satisfies the following condition: if α , β , α∧ β , α∨ β∈ H , then μ(α∨ β) = μ(α) + μ(β) - μ(α∧ β) . Since the range of μ is the set [0 , 1] Q of rational numbers from the real unit interval, our logic is not compact. In order to obtain a strong complete axiomatization, we introduce an infinitary inference rule with a countable set of premises. The main technical results are the proofs of strong completeness and decidability. | en_US |
dc.publisher | Springer Link | en_US |
dc.relation.ispartof | Studia Logica | en_US |
dc.subject | Intuitionistic | Logic | en_US |
dc.title | The Logic ILP for Intuitionistic Reasoning About Probability | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s11225-023-10084-z | - |
dc.identifier.scopus | 2-s2.0-85178894445 | - |
dc.contributor.affiliation | Mathematics | en_US |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | en_US |
dc.relation.firstpage | 987 | - |
dc.relation.lastpage | 1017 | - |
dc.relation.volume | 112 | - |
dc.description.rank | ~M21 | - |
item.cerifentitytype | Publications | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-9771-1196 | - |
crisitem.author.orcid | 0000-0003-2508-6480 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.