DC FieldValueLanguage
dc.contributor.authorJovanović, Božidaren_US
dc.contributor.authorLukić, Katarinaen_US
dc.date.accessioned2023-11-24T09:29:29Z-
dc.date.available2023-11-24T09:29:29Z-
dc.date.issued2023-
dc.identifier.issn1751-8113-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5229-
dc.description.abstractMotivated by the time-dependent Hamiltonian dynamics, we extend the notion of Arnold-Liouville and noncommutative integrability of Hamiltonian systems on symplectic manifolds to that on cosymplectic manifolds. We prove a variant of the non-commutative integrability for evaluation and Reeb vector fields on cosymplectic manifolds and provide a construction of cosymplectic action-angle variables.en_US
dc.publisherIOP Scienceen_US
dc.relation.ispartofJournal of Physics A: Mathematical and Theoreticalen_US
dc.subjectaction-angle coordinates | evaluation vector fields | noncommutative integrability | Reeb flowsen_US
dc.titleIntegrable systems in cosymplectic geometryen_US
dc.typeArticleen_US
dc.identifier.doi10.1088/1751-8121/acafb4-
dc.identifier.scopus2-s2.0-85146503791-
dc.contributor.affiliationMechanicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage015201-
dc.relation.volume56-
dc.description.rank~M21-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairetypeArticle-
crisitem.author.orcid0000-0002-3393-4323-
Show simple item record

SCOPUSTM   
Citations

1
checked on Jan 4, 2025

Page view(s)

25
checked on Jan 4, 2025

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.