DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jovanović, Božidar | en_US |
dc.contributor.author | Lukić, Katarina | en_US |
dc.date.accessioned | 2023-11-24T09:29:29Z | - |
dc.date.available | 2023-11-24T09:29:29Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 1751-8113 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/5229 | - |
dc.description.abstract | Motivated by the time-dependent Hamiltonian dynamics, we extend the notion of Arnold-Liouville and noncommutative integrability of Hamiltonian systems on symplectic manifolds to that on cosymplectic manifolds. We prove a variant of the non-commutative integrability for evaluation and Reeb vector fields on cosymplectic manifolds and provide a construction of cosymplectic action-angle variables. | en_US |
dc.publisher | IOP Science | en_US |
dc.relation.ispartof | Journal of Physics A: Mathematical and Theoretical | en_US |
dc.subject | action-angle coordinates | evaluation vector fields | noncommutative integrability | Reeb flows | en_US |
dc.title | Integrable systems in cosymplectic geometry | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1088/1751-8121/acafb4 | - |
dc.identifier.scopus | 2-s2.0-85146503791 | - |
dc.contributor.affiliation | Mechanics | en_US |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | en_US |
dc.relation.firstpage | 015201 | - |
dc.relation.volume | 56 | - |
dc.description.rank | ~M21 | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
item.grantfulltext | none | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
crisitem.author.orcid | 0000-0002-3393-4323 | - |
SCOPUSTM
Citations
3
checked on Apr 1, 2025
Page view(s)
28
checked on Jan 31, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.