DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jovanović, Božidar | en_US |
dc.contributor.author | Lukić, Katarina | en_US |
dc.date.accessioned | 2023-11-24T09:29:29Z | - |
dc.date.available | 2023-11-24T09:29:29Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 1751-8113 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/5229 | - |
dc.description.abstract | Motivated by the time-dependent Hamiltonian dynamics, we extend the notion of Arnold-Liouville and noncommutative integrability of Hamiltonian systems on symplectic manifolds to that on cosymplectic manifolds. We prove a variant of the non-commutative integrability for evaluation and Reeb vector fields on cosymplectic manifolds and provide a construction of cosymplectic action-angle variables. | en_US |
dc.publisher | IOP Science | en_US |
dc.relation.ispartof | Journal of Physics A: Mathematical and Theoretical | en_US |
dc.subject | action-angle coordinates | evaluation vector fields | noncommutative integrability | Reeb flows | en_US |
dc.title | Integrable systems in cosymplectic geometry | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1088/1751-8121/acafb4 | - |
dc.identifier.scopus | 2-s2.0-85146503791 | - |
dc.contributor.affiliation | Mechanics | en_US |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | en_US |
dc.relation.firstpage | 015201 | - |
dc.relation.volume | 56 | - |
dc.description.rank | ~M21 | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.grantfulltext | none | - |
item.fulltext | No Fulltext | - |
item.openairetype | Article | - |
crisitem.author.orcid | 0000-0002-3393-4323 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.