DC Field | Value | Language |
---|---|---|
dc.contributor.author | Qi, Feng | en_US |
dc.contributor.author | Milovanović, Gradimir V. | en_US |
dc.contributor.author | Lim, Dongkyu | en_US |
dc.date.accessioned | 2023-11-23T13:53:43Z | - |
dc.date.available | 2023-11-23T13:53:43Z | - |
dc.date.issued | 2023 | - |
dc.identifier.issn | 0354-5180 | - |
dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/5216 | - |
dc.description.abstract | Starting from Maclaurin’s series expansions for positive integer powers of analytic functions, the authors derive an explicit formula for specific values of partial Bell polynomials, present a general term of Maclaurin’s series expansions for real powers of analytic functions, obtain Maclaurin’s series expansions of some composite functions, recover Maclaurin’s series expansions for real powers of inverse sine function and sinc function, recover a combinatorial identity involving the falling factorials and the Stirling numbers of the second kind, deduce an explicit formula of the Bernoulli numbers of the second kind in terms of the Stirling numbers of the first kind, recover an explicit formula of the Bernoulli numbers in terms of the Stirling numbers of the second kind, recover an explicit formula of the Bell numbers in terms of the Stirling numbers of the second kind, reformulate three specific partial Bell polynomials in terms of central factorial numbers of the second kind, and present some Maclaurin’s series expansions and identities related to the Euler numbers and their generating function. | en_US |
dc.publisher | University of Niš | en_US |
dc.relation.ispartof | Filomat | en_US |
dc.subject | Bell number | Bernoulli number | central factorial number of the second kind | combinatorial identity | composite function | Euler number | explicit formula | inverse sine function, sinc function | Maclaurin’s series expansion | partial Bell polynomial | positive integer power | real power | Stirling number | en_US |
dc.title | Specific values of partial Bell polynomials and series expansions for real powers of functions and for composite functions | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.2298/FIL2328469Q | - |
dc.identifier.scopus | 2-s2.0-85168566647 | - |
dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | en_US |
dc.relation.firstpage | 9469 | - |
dc.relation.lastpage | 9485 | - |
dc.relation.issue | 28 | - |
dc.relation.volume | 37 | - |
dc.description.rank | ~M22 | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Article | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
SCOPUSTM
Citations
2
checked on Nov 19, 2024
Page view(s)
18
checked on Nov 19, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.