| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Stević, Stevo | en_US |
| dc.date.accessioned | 2023-11-23T13:31:43Z | - |
| dc.date.available | 2023-11-23T13:31:43Z | - |
| dc.date.issued | 2023 | - |
| dc.identifier.issn | 2560-6921 | - |
| dc.identifier.uri | http://researchrepository.mi.sanu.ac.rs/handle/123456789/5213 | - |
| dc.description.abstract | We introduce a polynomial differentiation composition operator on spaces of holomorphic functions on the open unit ball in the n-dimensional complex vector space, and characterize the boundedness and compactness of the operator from the classical weighted Bergman space to the weighted-type space and the little weighted-type space of holomorphic functions on the unit ball. | en_US |
| dc.publisher | Biemdas Academic Publishers | en_US |
| dc.relation.ispartof | Journal of Nonlinear and Variational Analysis | en_US |
| dc.subject | Compact operator | Holomorphic functions | Polynomial differentiation composition operator | Product-type operator | Weighted Bergman space | Weighted-type space | en_US |
| dc.title | POLYNOMIAL DIFFERENTIATION COMPOSITION OPERATORS FROM WEIGHTED BERGMAN SPACES TO WEIGHTED-TYPE SPACES ON THE UNIT BALL | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.23952/jnva.7.2023.3.05 | - |
| dc.identifier.scopus | 2-s2.0-85167872069 | - |
| dc.contributor.affiliation | Mathematics | en_US |
| dc.contributor.affiliation | Mathematical Institute of the Serbian Academy of Sciences and Arts | - |
| dc.relation.firstpage | 397 | - |
| dc.relation.lastpage | 407 | - |
| dc.relation.issue | 3 | - |
| dc.relation.volume | 7 | - |
| dc.description.rank | ~M21a | - |
| item.cerifentitytype | Publications | - |
| item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
| item.grantfulltext | none | - |
| item.openairetype | Article | - |
| item.fulltext | No Fulltext | - |
| crisitem.author.orcid | 0000-0002-7202-9764 | - |
SCOPUSTM
Citations
1
checked on Jan 27, 2026
Page view(s)
100
checked on Jan 27, 2026
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.