DC FieldValueLanguage
dc.contributor.authorProkić, Ivanen_US
dc.contributor.authorGhilezan, Silviaen_US
dc.contributor.authorKašterović, Simonaen_US
dc.contributor.authorPopović, Miroslaven_US
dc.contributor.authorPopović, Markoen_US
dc.contributor.authorKaštelan, Ivanen_US
dc.date.accessioned2023-10-12T12:43:38Z-
dc.date.available2023-10-12T12:43:38Z-
dc.date.issued2023-
dc.identifier.isbn978-3-031-49252-5-
dc.identifier.isbn978-3-031-49251-8-
dc.identifier.issn0302-9743-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5175-
dc.description.abstractFederated learning (FL) is a machine learning setting where clients keep the training data decentralised and collaboratively train a model either under the coordination of a central server (centralised FL) or in a peer-to-peer network (decentralised FL). Correct orchestration is one of the main challenges. In this paper, we formally verify the correctness of two generic FL algorithms, a centralised and a decentralised one, using the CSP process calculus and the PAT model checker. The CSP models consist of CSP processes corresponding to generic FL algorithm instances. PAT automatically proves the correctness of the two generic FL algorithms by proving their deadlock freeness (safety property) and successful termination (liveness property). The CSP models are constructed bottom-up by hand as a faithful representation of the real Python code and is automatically checked top-down by PAT.en_US
dc.relation.ispartofEngineering of Computer-Based Systems-
dc.subjectDecentralised intelligence | Federated learning | Python | Formal verification | CSP process calculusen_US
dc.titleCorrect orchestration of Federated Learning generic algorithms: formalisation and verification in CSPen_US
dc.typeConference Paperen_US
dc.relation.conferenceECBS 2023 - 8th International Conference on the Engineering of Computer Based Systems, Västerås, Swedenen_US
dc.identifier.doi10.48550/arXiv.2306.14529-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage274-
dc.relation.lastpage288-
dc.relation.volume14390 LNCS-
dc.description.rankM33-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Paper-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-2253-8285-
Show simple item record

Page view(s)

17
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.