DC FieldValueLanguage
dc.contributor.authorBaralić, Đorđeen_US
dc.contributor.authorVavpetič, Alešen_US
dc.contributor.authorVučić, Aleksandaren_US
dc.date.accessioned2023-10-02T15:22:34Z-
dc.date.available2023-10-02T15:22:34Z-
dc.date.issued2023-
dc.identifier.issn1422-6383-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5154-
dc.description.abstractWe study combinatorial and topological properties of the universal complexes X(Fpn) and K(Fpn) whose simplices are certain unimodular subsets of Fpn . We calculate their f -vectors and the bigraded Betti numbers of their Tor-algebras, show that they are shellable, and find their applications in toric topology and number theory. We show that the Lusternick–Schnirelmann category of the moment angle complex of X(Fpn) is n, provided p is an odd prime, and the Lusternick–Schnirelmann category of the moment angle complex of K(Fpn) is [n2] . Based on the universal complexes, we introduce the Buchstaber invariant sp for a prime number p.en_US
dc.publisherSpringer Linken_US
dc.relationResearch on this paper was partially supported by the bilateral project “Discrete Morse theory and its Applications” funded by the Ministry for Education and Science of the Republic of Serbia and the Ministry of Education, Science and Sport of the Republic of Slovenia.en_US
dc.relation.ispartofResults in Mathematicsen_US
dc.subjectbigraded Betti numbers | Lusternik–Schnirelmann category | moment-angle complex | Tor-algebra | Universal complexesen_US
dc.titleUniversal Complexes in Toric Topologyen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00025-023-01995-3-
dc.identifier.scopus2-s2.0-85168687441-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage218-
dc.relation.volume78-
dc.description.rank~M21a-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0003-2836-7958-
Show simple item record

Page view(s)

18
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.