DC FieldValueLanguage
dc.contributor.authorStević, Stevoen_US
dc.contributor.authorTollu, Durhasan Turguten_US
dc.date.accessioned2023-08-11T10:34:59Z-
dc.date.available2023-08-11T10:34:59Z-
dc.date.issued2023-
dc.identifier.issn2473-6988-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5134-
dc.description.abstractWe consider the two-dimensional nonlinear system of difference equations xn = xn−k ayn−l + byn−(k+l) cyn−l + dyn−(k+l), yn = yn−k αxn−l + βxn−(k+l) γxn−l + δxn−(k+l), for n ∈ N0, where the delays k and l are two natural numbers, and the initial values x−j, y−j, 1 ≤ j ≤ k+l, and the parameters a, b, c, d, α, β, γ, δ are real numbers. We show that the system of difference equations is solvable by presenting a method for finding its general solution in detail. Bearing in mind that the system of equations is a natural generalization of the corresponding one-dimensional difference equation, whose special cases appear in the literature from time to time, our main result presented here also generalizes many results therein.en_US
dc.publisherAIMS Pressen_US
dc.relation.ispartofAIMS Mathematicsen_US
dc.subjectclosed-form formula | nonlinear system of difference equations | solvable systemen_US
dc.titleOn a two-dimensional nonlinear system of difference equations close to the bilinear systemen_US
dc.typeArticleen_US
dc.identifier.doi10.3934/math.20231048-
dc.identifier.scopus2-s2.0-85163038204-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage20561-
dc.relation.lastpage20575-
dc.relation.issue9-
dc.relation.volume8-
dc.description.rank~M21a-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-7202-9764-
Show simple item record

Page view(s)

22
checked on Nov 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.