DC FieldValueLanguage
dc.contributor.authorMilovanović, Milošen_US
dc.contributor.authorTomić, Bojanen_US
dc.contributor.authorSaulig, Nicolettaen_US
dc.date.accessioned2023-07-14T08:47:36Z-
dc.date.available2023-07-14T08:47:36Z-
dc.date.issued2023-
dc.identifier.issn0960-0779-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5109-
dc.description.abstractIn the paper, authors report on the interdisciplinary and extremely complex link between wavelets and stochastic processes. An insight into the history of wavelets has been provided presenting the fundamental conception of wavelets, as well as wavelet theory that emerged from stochastic processes. The multiresolution analysis corresponds to the Kolmogorov system which is a regular stationary stochastic process. It presents a significant link to the measurement problem in terms of positional notation which the wavelet domain hidden Markov model should be derived from. The optimal representation arises to be an issue requiring further elaboration extended to the general measurement and wavelet frames.en_US
dc.publisherElsevieren_US
dc.relation.ispartofChaos, Solitons & Fractalsen_US
dc.subjectMultiresolution analysis | Time operator | Regular stationary processes | Measurement problem | Optimal representation | Hidden Markov model | Underlying dynamicsen_US
dc.titleWavelets and stochastic theory: Past and futureen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.chaos.2023.113724-
dc.identifier.scopus2-s2.0-85164220431-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage113724-
dc.relation.volume173-
dc.description.rank~M21a-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-2909-451X-
Show simple item record

SCOPUSTM   
Citations

6
checked on Nov 19, 2024

Page view(s)

31
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.