Authors: | Calderón, Daniel Farah, Ilijas |
Affiliations: | Mathematical Institute of the Serbian Academy of Sciences and Arts | Title: | Can you take Akemann–Weaver's ⋄ℵ1 away? | Journal: | Journal of Functional Analysis | Volume: | 285 | Issue: | 5 | First page: | 110017 | Issue Date: | 2023 | Rank: | ~M21 | ISSN: | 0022-1236 | DOI: | 10.1016/j.jfa.2023.110017 | Abstract: | By Glimm's dichotomy, a separable, simple C⁎-algebra has continuum many unitarily inequivalent irreducible representations if, and only if, it is non-type I while all of its irreducible representations are unitarily equivalent if, and only if, it is type I. Naimark asked whether the latter equivalence holds for all C⁎-algebras. In 2004, Akemann and Weaver gave a negative answer to Naimark's problem using Jensen's Diamond Principle ⋄ℵ1, a powerful diagonalization principle that implies the Continuum Hypothesis (CH). By a result of Rosenberg, a separably represented, simple C⁎-algebra with a unique irreducible representation is necessarily of type I. We show that this result is sharp by constructing an example of a separably represented, simple C⁎-algebra that has exactly two inequivalent irreducible representations, and therefore does not satisfy the conclusion of Glimm's dichotomy. Our construction uses a weakening of Jensen's ⋄ℵ1, denoted ⋄Cohen, that holds in the original Cohen's model for the negation of CH. We also prove that ⋄Cohen suffices to give a negative answer to Naimark's problem. Our main technical tool is a forcing notion that generically adds an automorphism of a given C⁎-algebra with a prescribed action on its space of pure states. |
Keywords: | Forcing | Jensen's diamond | Naimark's problem | Representations of C⁎-algebras | Publisher: | Elsevier |
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.