DC FieldValueLanguage
dc.contributor.authorJovanović, Božidaren_US
dc.date.accessioned2023-06-27T09:24:23Z-
dc.date.available2023-06-27T09:24:23Z-
dc.date.issued2023-
dc.identifier.issn0015-9018-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5101-
dc.description.abstractWe present the basic concepts of space and time, the Galilean and pseudo-Euclidean geometry. We use an elementary geometric framework of affine spaces and groups of affine transformations to illustrate the natural relationship between classical mechanics and theory of relativity, which is quite often hidden, despite its fundamental importance. We have emphasized a passage from the group of Galilean motions to the group of Poincaré transformations of a plane. In particular, a 1-parametric family of natural deformations of the Poincaré group is described. We also visualized the underlying groups of Galilean, Euclidean, and pseudo-Euclidean rotations within the special linear group.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofFoundations of Physicsen_US
dc.subjectAddition of velocities | Affine transformations | The Galilean and pseudo-Euclidean geometry | The Galilean principle of relativity | The Iwasawa decompositionen_US
dc.titleAffine Geometry and Relativityen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10701-023-00700-2-
dc.identifier.scopus2-s2.0-85161003983-
dc.contributor.affiliationMechanicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage60-
dc.relation.volume53-
dc.description.rank~M22-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0002-3393-4323-
Show simple item record

Page view(s)

21
checked on Dec 22, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.