DC FieldValueLanguage
dc.contributor.authorDamnjanovic, Ivanen_US
dc.contributor.authorStevanović, Draganen_US
dc.date.accessioned2023-06-27T09:08:05Z-
dc.date.available2023-06-27T09:08:05Z-
dc.date.issued2023-
dc.identifier.issn0350-1302-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5098-
dc.description.abstractRecently, Gutman defined a new graph invariant which is named the Sombor index SO(G) of a graph G and is computed via the expression (Formula Presented) where deg(u) represents the degree of the vertex u in G and the summing is performed across all the unordered pairs of adjacent vertices u and v. Damnjanović et al. have implemented an earlier result obtained by Wang in order to show that, among all the trees TD that have a specified degree sequence D, the greedy tree must attain the minimum Sombor index. Here we provide an alternative proof of this same result by constructing an auxiliary graph invariant named the pseudo-Sombor index and without relying on any other earlier results.en_US
dc.publisherMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.ispartofPublications de l'Institut Mathematiqueen_US
dc.subjectdegree sequence | greedy tree | Sombor index | treesen_US
dc.titleAN ALTERNATIVE PROOF OF THE SOMBOR INDEX MINIMIZING PROPERTY OF GREEDY TREESen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/PIM2327057D-
dc.identifier.scopus2-s2.0-85161227158-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage57-
dc.relation.lastpage65-
dc.relation.issue127-
dc.relation.volume113-
dc.description.rankM24-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0003-2908-305X-
Show simple item record

Page view(s)

16
checked on Nov 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.