DC FieldValueLanguage
dc.contributor.authorMilićević, Lukaen_US
dc.date.accessioned2023-06-27T09:04:22Z-
dc.date.available2023-06-27T09:04:22Z-
dc.date.issued2023-
dc.identifier.issn0350-1302-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5097-
dc.description.abstractLet G be a finite-dimensional vector space over a prime field Fp with some subspaces H1,…,Hk. Let f: G → C be a function. Generalizing the notion of Gowers uniformity norms, Austin introduced directional Gowers uniformity norms of f over (H1,…,Hk) as (Formula Presented) where ∆uf(x): = f(x + u)f(x) is the discrete multiplicative derivative. Suppose that G is a direct sum of subspaces G = U1 ⊕ U2 ⊕ · · · ⊕ Uk. In this paper we prove the inverse theorem for the norm (Formula Presented) with ℓ copies of G in the subscript, which is the simplest interesting unknown case of the inverse problem for the directional Gowers uniformity norms. Namely, writing k· kU for the norm above, we show that if f: G → C is a function bounded by 1 in magnitude and obeying kfkU > c, provided ℓ < p, one can find a polynomial α: G → Fp of degree at most k + ℓ − 1 and functions gi: ⊕j2[k]r{i} Uj → {z ⊕ C: |z| 6 1} for i ⊕ [k] such that The proof relies on an approximation theorem for the cuboid-counting function that is proved using the inverse theorem for Freiman multi-homomorphisms.en_US
dc.publisherMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.ispartofPublications de l'Institut Mathematiqueen_US
dc.subjectbias | directional uniformity norms | partition ranken_US
dc.titleINVERSE THEOREM FOR CERTAIN DIRECTIONAL GOWERS UNIFORMITY NORMSen_US
dc.typeArticleen_US
dc.identifier.doi10.2298/PIM2327001M-
dc.identifier.scopus2-s2.0-85161227000-
dc.contributor.affiliationMathematicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Arts-
dc.relation.firstpage1-
dc.relation.lastpage56-
dc.relation.issue127-
dc.relation.volume113-
dc.description.rankM24-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-1427-7241-
Show simple item record

Page view(s)

34
checked on May 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.