DC FieldValueLanguage
dc.contributor.authorMateljević, Miodragen_US
dc.contributor.authorMutavdžić, Nikolaen_US
dc.date.accessioned2023-06-20T11:54:10Z-
dc.date.available2023-06-20T11:54:10Z-
dc.date.issued2022-
dc.identifier.issn0126-6705-
dc.identifier.urihttp://researchrepository.mi.sanu.ac.rs/handle/123456789/5092-
dc.description.abstractWe use the improvement of the classical Schwarz lemmas for planar harmonic mappings into the sharp form, in order to provide some applications to sharp boundary Schwarz type lemmas for holomorphic and in particular pluriharmonic mappings between the unit balls in Hilbert and Banach spaces. In the second part of this article, using Burget’s estimate we establish the sharp boundary Schwarz type lemmas for harmonic mappings between finite dimensional balls. Since here we do not suppose in general that maps fix the origin this is a generalization of the result, previously established by David Kalaj, for harmonic functions. At the end of this section, we derived some interesting conclusion considering hyperbolic-harmonic functions in the unit ball, which shows that Hopf’s lemma is not applicable for those functions.en_US
dc.publisherSpringer Linken_US
dc.relation.ispartofBulletin of the Malaysian Mathematical Sciences Societyen_US
dc.subjectBanach space | Harmonic functions in higher dimensions | Pluriharmonic mappings | The boundary Schwarz lemmaen_US
dc.titleThe Boundary Schwarz Lemma for Harmonic and Pluriharmonic Mappings and Some Generalizationsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s40840-022-01371-4-
dc.identifier.scopus2-s2.0-85136871099-
dc.contributor.affiliationMechanicsen_US
dc.contributor.affiliationMathematical Institute of the Serbian Academy of Sciences and Artsen_US
dc.relation.firstpage3177-
dc.relation.lastpage3195-
dc.relation.issue6-
dc.relation.volume45-
dc.description.rank~M21-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
crisitem.author.orcid0009-0007-7210-8212-
Show simple item record

SCOPUSTM   
Citations

10
checked on Nov 23, 2024

Page view(s)

23
checked on Nov 23, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.